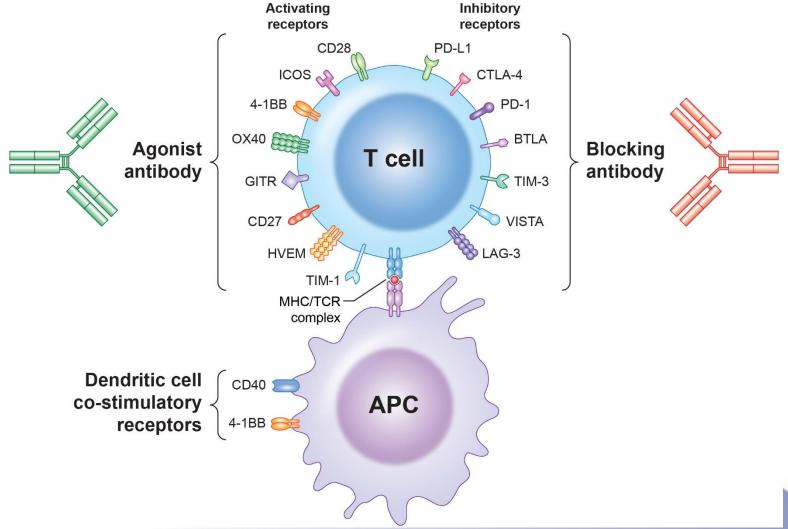


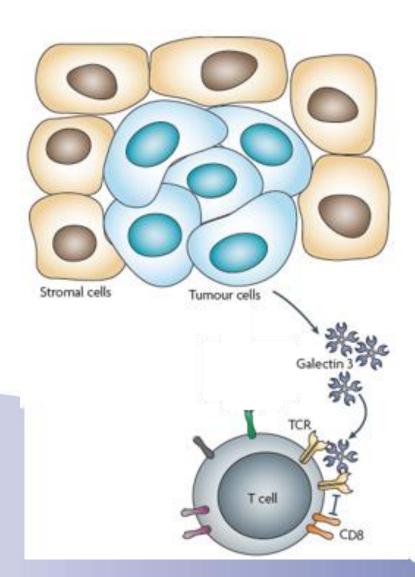
William L. Redmond, PhD

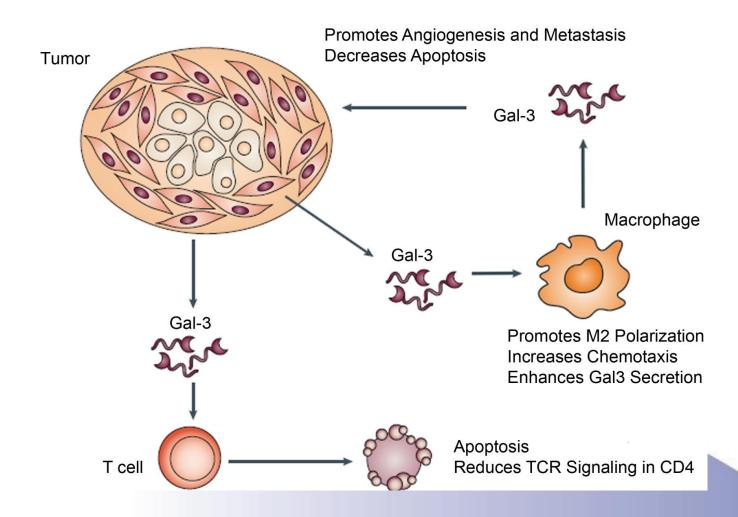
Associate Member, Laboratory of Cancer Immunotherapy Director, Immune Monitoring Laboratory Earle A. Chiles Research Institute, Providence Cancer Center william.redmond@providence.org
@wwredmond4; @ChilesResearch


Disclosures

(Research grants, consulting, and/or royalties)

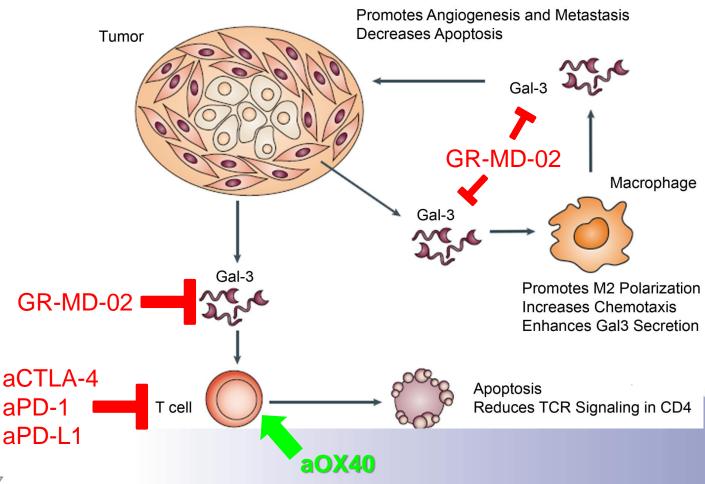
Galectin Therapeutics, Merck, Nektar
 Therapeutics, Tesaro, IRX Therapeutics, CSRA
 Inc.


Immune-modulating antibodies


Galectin-3 and cancer

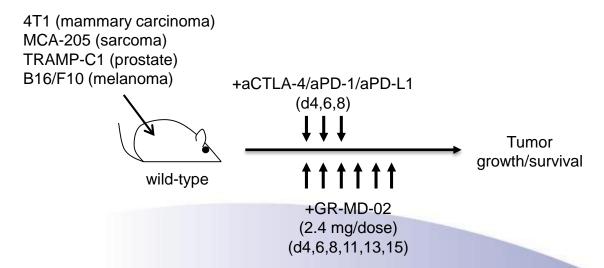
- Gal-3 is a lectin
 (carbohydrate binding
 protein) that is shed by
 tumor cells and suppresses
 "killer" T cell function
- Promotes angiogenesis and spread (metastasis) of cancer cells
- Highly expressed in a variety of tumors

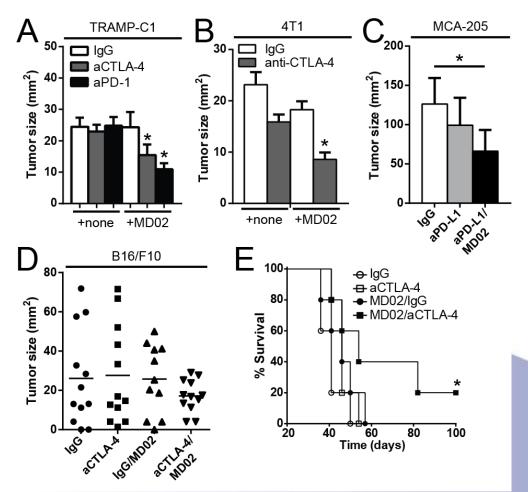
Immune suppression via galectin-3



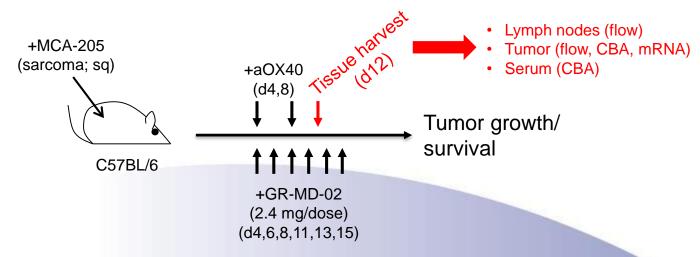
Galectin-3 inhibitor (GR-MD-02)

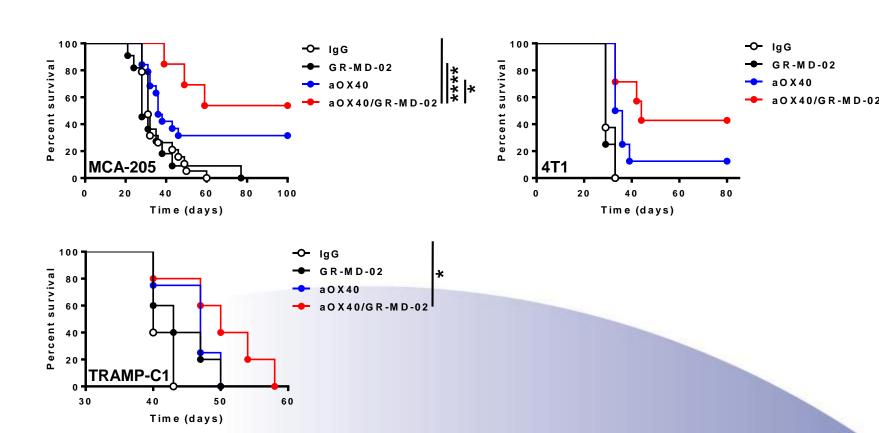
- Developed by our collaborator, Galectin Therapeutics, Inc. (http://galectintherapeutics.com)
- GR-MD-02 is considered a Non-biological Complex Drug (NBCD)
 - A glycopolymer (polysaccharide) derived from USP Apple Pectin
 - Drug binds to and inhibits galectin-3
- GR-MD-02 is being investigated in three galectin-3 dependent indications
 - Non-alcoholic steatohepatitis (NASH) with advanced fibrosis
 - Completed two Phase 1 and one Phase 2a trials
 - Phase 2b clinical trial in patients with NASH cirrhosis completely enrolled with top line data to be reported in December 2017
 - Severe skin disease, including moderate to severe plaque psoriasis and severe atopic dermatitis
 - Combination cancer immunotherapy


Does immunotherapy plus Gal-3 inhibition augment anti-tumor immunity?

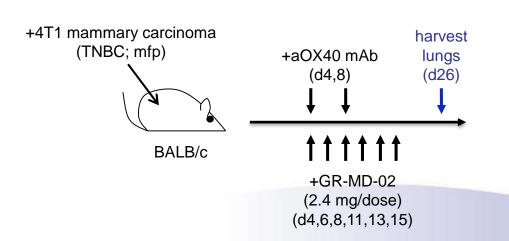

GR-MD-02 plus checkpoint blockade

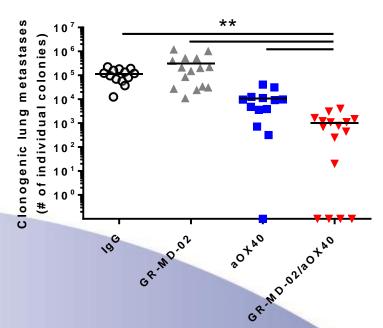
Model


Reduced tumor burden and increased survival following GR-MD-02 plus checkpoint blockade

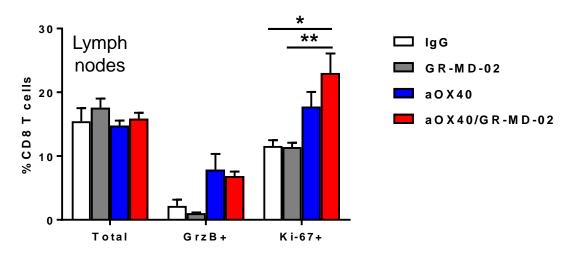

Combined GR-MD-02/aOX40 therapy to augment anti-tumor immunity

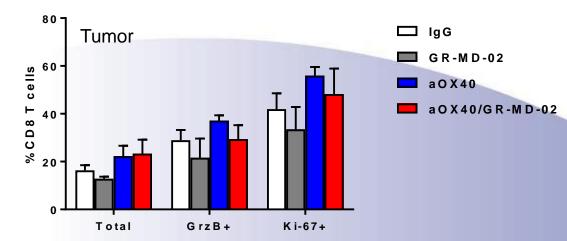
Model

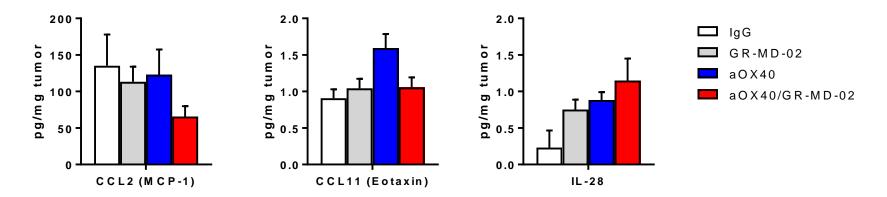

Combined GR-MD-02/aOX40 therapy improves survival

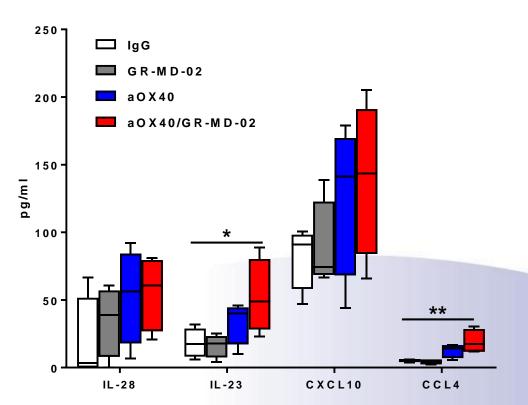


Combined GR-MD-02/aOX40 therapy reduces spontaneous lung metastases


<u>Model</u>

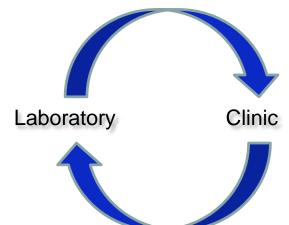



GR-MD-02/aOX40 increases CD8 T cell proliferation


Effects of GR-MD-02/aOX40 on cytokine/chemokine profile (tumor)

- CCL2: promotes monocyte recruitment to TME; suppresses T cell responses
- CCL11: Gal3 induces CCL11 and regulates eosinophil trafficking
- IL-28 (type III IFN): associated with improved anti-tumor immunity

Effects of GR-MD-02/aOX40 on cytokine/chemokine profile (serum)



- IL-23: promotes Th17 CD4 T cells
- CXCL10: Binds CXCR3 and affects CD8 T cell trafficking to the TME
- CCL4: Drives increased CD8 T cell recruitment and DC maturation

Translation to the clinic

Pre-clinical discoveries

Clinical trials
PI: Dr. Brendan Curti, MD

- Galectin Inhibitor (GR-MD-02) and Ipilimumab in Patients With Metastatic Melanoma (NCT02117362)
 - This trial was initiated in 2015, enrolled 7 subjects with GR-MD-02 doses of 1 and 2 mg/kg
 - There were no safety signals identified
 - In these initial cohorts, there were no notable changes in the peripheral immune signature
 - Due to changes in the standard of care for metastatic melanoma (i.e., approval of anti-PD-1), recruitment has been slowed significantly

Galectin Inhibitor (GR-MD-02) and Pembrolizumab in Patients with Metastatic Melanoma, Non-Small Lung Cancer and Head and Neck Squamous Cell Carcinoma (NCT02575404)

- 1. Pembrolizumab is FDA-approved to treat:
 - a. Melanoma after progression on ipilimumab: RR = 26%
 - b. Oral head and neck squamous cell carcincoma (OHN) after progression on platinum-containing chemo: RR = 18%
 - c. Non-small cell lung cancer where there is tumorexpression of PD-L1 and disease progression on platinum-containing chemo (or agents targeting EGFR or ALK when those mutations are present): RR = 45%

Objectives

1. Primary

a. Determine a safe dose of GR-MD-02 used in combination with pembrolizumab of 200 mg IV every 3 weeks

2. Secondary

- a. Measure the response rate to combined therapy with GR-MD-02 and pembrolizumab in patients with metastatic melanoma, OHN and NSCLC for whom pembrolizumab is considered standard of care
- Measure the response rate of combined therapy with GR-MD-02 and pembrolizumab in patients with metastatic melanoma, NSCLC or HNSCC with tumor progression after pembrolizumab monotherapy
- c. Assess the biological activity of GR-MD-02 and pembrolizumab
 - i. Immune monitoring for changes in effector/memory T cells
 - ii. Tumor-specific responses using autologous and/or HLA-matched tumor
- d. Examine the composition of the tumor immune infiltrate from tumor biopsies (when feasible)

Main inclusion criteria

- Patients with metastatic or unresectable melanoma, OHN and NSCLC for whom pembrolizumab would be considered standard of care
- 2. Patients who have radiographic progression using RECIST criteria currently on pembrolizumab or who have recently discontinued pembrolizumab treatment and meet all other eligibility criteria are also eligible
- 3. Patients must be ≥ 18 years of age
- 4. ECOG performance status of 0-2

Main exclusion criteria

- 1. Patients who have previously received a galectin antagonist
- 2. Patients with active autoimmune disease except for autoimmune thyroiditis or vitiligo
- 3. Patients with history of autoimmune colitis
- Patients with untreated brain metastases (pts w/ treated brain metastases who demonstrate control of brain metastases with follow-up imaging >4 wks post-Tx are eligible)
- 5. Need for chronic steroids (inhaled corticosteroids are acceptable)

Treatment regimen

- Pembrolizumab 200 mg (fixed dose) + GR-MD-02 IV every 3 weeks
 - a. GR-MD-02 is given for 5 doses
 - b. Pembrolizumab can continue until disease progression

Cohort	GR-MD-02 dose (mg/kg lean body mass)			
1	2*			
2	4			
3	8**			

^{*} Dose level completed, beginning enrollment to cohort 2

^{**} Consideration will be given to increasing dose further, dependent upon responses and adverse events

Patient summary

(Cohort 1, 2 mg/kg GR-MD-02)

Study Number	Diagnosis	Patient Current status	Patient Notes
RWF_15-166	Melanoma	Enrolled	on treatment
RWF_15-166	Melanoma	Active FU	progression
RWF_15-166	Melanoma	Enrolled	mixed response
RWF_15-166	Melanoma	Enrolled	PR
RWF_15-166	Melanoma	Withdrawn	Not enrolled
RWF_15-166	OHN	Enrolled	progression
RWF_15-166	Melanoma	Enrolled	progression
RWF_15-166	OHN	Ineligible	Not enrolled

Note: Study design calls for 3 patients enrolled per cohort with 3 additional if there are adverse events. While there were <u>no adverse</u> <u>events</u>, 6 patients were enrolled because 3 had not completed protocol when others were identified

Adverse events

(GR-MD-02 + Pembrolizumab)

Toxicity	Attributed to	Attributed to	Grade			
	Pembrolizumab	GR-MD-02	1	2	3	4
Flu Symptoms	X		4			
Pruritis	X		3	1		
Rash	X		3			
Fatigue	X		2			
Lymphopenia	X		2			
Diarrhea	X		2			
Decreased WBC	X		1			
Decreased appetite	X		1			
Dysgeusia	X		1	1		
Vitiligo	X		1			
Infusion Reaction	X			1		
Anemia	X		1			
Nasal Congestion	X		1			
Tumor pain	X				1	
Watering eyes	X		1			
Dry eyes	X		1			
Dry Mouth	X		1			

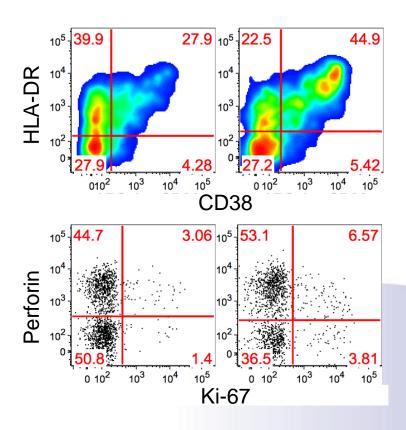
Table summarizes maximum toxicity grade per patient attributed to study agent. Multiple instances of the same toxicity in an individual were counted only once

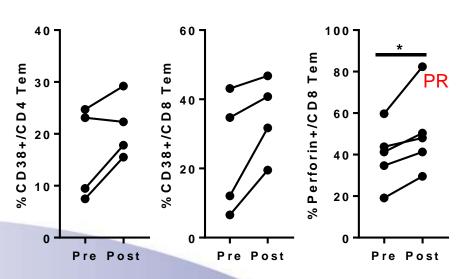
Adverse events

(GR-MD-02 + Ipilimumab)

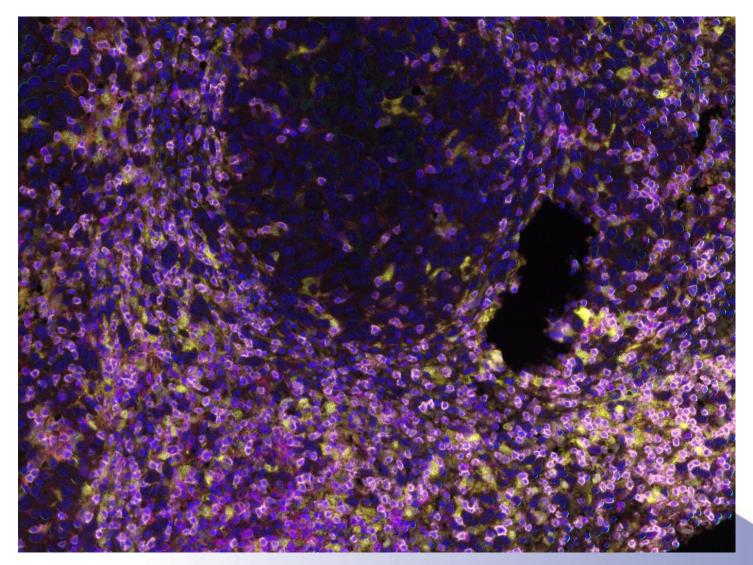
Toxicity	Attributed to Ipilimumab	Attributed to GR-MD-02	Grade			
			1	2	3	4
Diarrhea	X		3			
Pruritis	X		3			
Rash	X		2			
Fatigue	X		2			
Fever	X		1			
Infusion Reaction	X		1			
Decreased PMNs	X		1			
Decreased appetite	X		1			

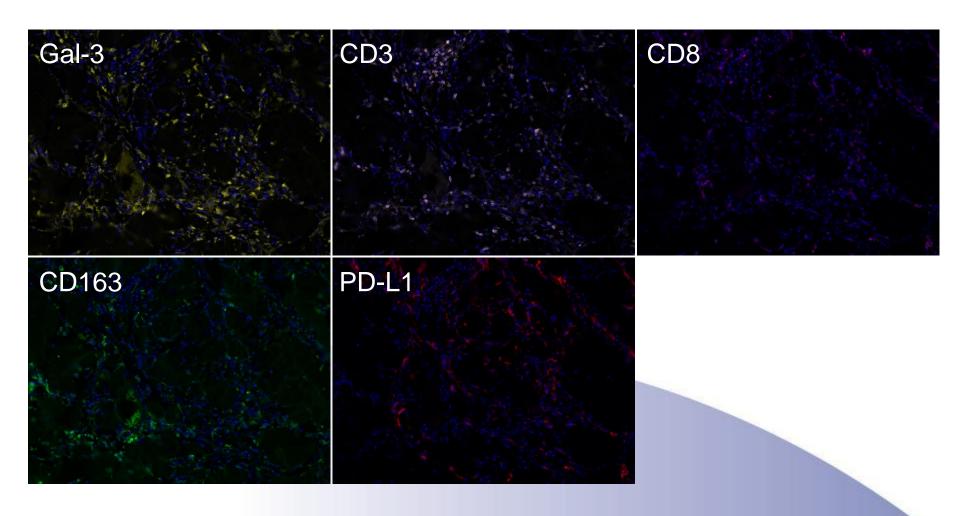
Table summarizes maximum toxicity grade per patient attributed to study agent. Multiple instances of the same toxicity in an individual were counted only once

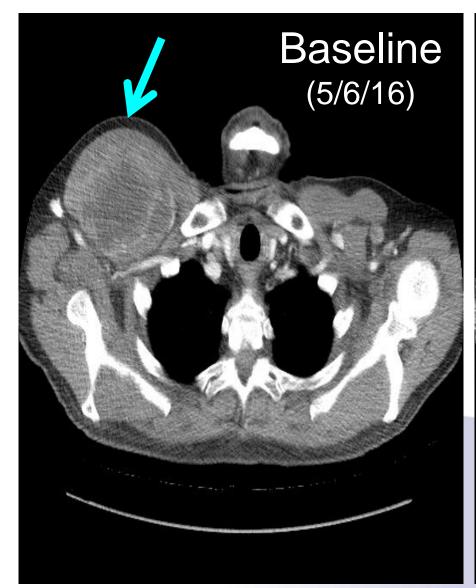


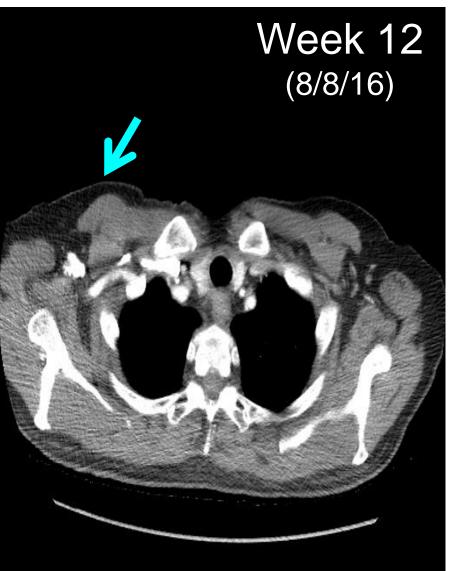

Immune monitoring

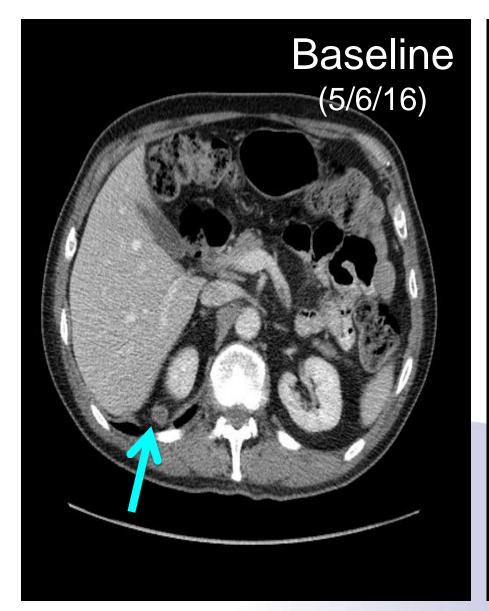
- 1. Peripheral blood
 - a. CD4, CD8, Treg, Th1/Th2/Th17, Tcm/Tem
 - b. Ki-67, CD38/HLA-DR, perforin, granzyme
 - c. Monocyte/DC panels (M1/M2 polarization)
 - d. MDSC
- 2. Multispectral imaging (IHC)
- 3. Serum cytokine/chemokines (multiplex ELISA)

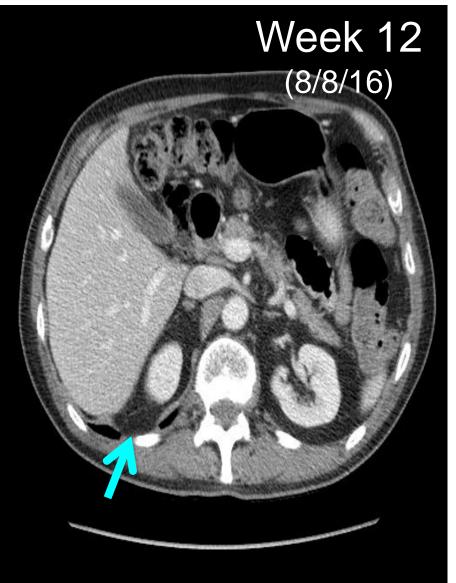

Immune monitoring (PBL)


Multispectral imaging


Multispectral imaging


(pre-treatment biopsy)





Summary / future directions

- 1. GR-MD-02 plus immunotherapy augments antitumor immunity
 - a. Reduced metastases, increased tumor regression, improved survival
 - b. MOA?
 - i. Cytokine/chemokine production
 - ii. T cell function, M1/M2 polarization
 - iii. Gene expression
- 2. First-in-human phase I clinical trials underway to test safety/efficacy of GR-MD-02 plus checkpoint blockade (melanoma, OHN, NSCLC)
 - a. Immune monitoring and IHC analysis
 - b. Progression to further development will be based on response rate as compared to historical response rates to pembrolizumab alone

Program Timelines

Phase 1: Pembrolizumab + GR-MD-02

Cohort 1 complete (2017; Q1)

Cohorts 2-3 (2018; Q2)

Controlled Phase 2

Ph2: GR-MD-02 + aPD-1 (start 2019; Q1)

Phase 1 with T cell agonist

Ph1: GR-MD-02 + aOX40

(2018; Q4)

Acknowledgements

Redmond Lab

Michael McNamara, PhD

Josh Walker, MD, PhD

Elizabeth Sturgill, PhD

Melissa Kasiewicz

Ian Hilgart-Martiszus

Courtney Mick

Mohammad Farhad

Dana Emerson

Kathy Chilton

Stefanie Linch, PhD

EACRI Vivarium

EACRI Immune Monitoring Lab

Yoshinobu Koguchi, MD, PhD

Iliana Gonzalez

William Miller

Tanisha Meeuwsen

Valerie Conrad

Ana Howells-Ferreira

Tomasz Poplonski, MS

EACRI/Providence Cancer Center

Brendan Curti, MD

Christopher Fountain, RN

Galectin Therapeutics

Peter Traber, MD

Patients and their families!!!

Health & Services

Providence Portland Medical Foundation

